Performance Optimization of New High Temperature Ceramic Coating on Hot End Part Surface of Aero-engine

FENG Chi, YANG Bin, LEI Qiang, WANG Jianfeng, ZOU Feng, DUAN Sujie

Equipment Environmental Engineering ›› 2024, Vol. 21 ›› Issue (6) : 78-84.

PDF(6323 KB)
PDF(6323 KB)
Equipment Environmental Engineering ›› 2024, Vol. 21 ›› Issue (6) : 78-84. DOI: 10.7643/ issn.1672-9242.2024.06.011
Aviation and Aerospace Equipment

Performance Optimization of New High Temperature Ceramic Coating on Hot End Part Surface of Aero-engine

  • FENG Chi1, YANG Bin2, LEI Qiang2, WANG Jianfeng1, ZOU Feng1, DUAN Sujie1
Author information +
History +

Abstract

The work aims to improve the long-term protective coating W-200 on the hot end part surface of aero-engine, and explore a new high-temperature ceramic coating on the superalloy surface with better high temperature stability and not easy to collapse so as to solve the problem of brittle porcelain and peeling exposed by W-200 coating on the superalloy surface. By adjusting expansion coefficient, softening temperature and crystallization temperature, new high-temperature resistant glass and filler were developed, and new high-temperature ceramic coating slurry was prepared. The new high-temperature ceramic coating W-400 could be successfully sintered on the superalloy surface at 1 150~1 230 ℃, and had a larger expansion coefficient, which could better match the expansion coefficient of superalloy substrate. At the same time, the crystallization temperature of W-400 was about 868~1 213 ℃, and the coating had better high-temperature stability, thermal shock resistance and resistance than W-200 in the crystallization temperature range. The new high-temperature ceramic coating W-400 solves the problem that W-200 high-temperature ceramic coating is likely to collapse after sintering on the hot end superalloy alloy parts surface of aeroengine. According to the research foundation of this project, it is possible to develop a new type of high-temperature ceramic coating with higher temperature resistance that can be successfully sintered on other metal surfaces at 1 250~1 400 ℃ in the future.

Key words

high temperature ceramic coating / superalloy / aircraft engine / glass / ceramic / anti-spalling

Cite this article

Download Citations
FENG Chi, YANG Bin, LEI Qiang, WANG Jianfeng, ZOU Feng, DUAN Sujie. Performance Optimization of New High Temperature Ceramic Coating on Hot End Part Surface of Aero-engine[J]. Equipment Environmental Engineering. 2024, 21(6): 78-84 https://doi.org/10.7643/ issn.1672-9242.2024.06.011

References

[1] 卢婷婷, 邵传金. 航空发动机热端部件安全性提升方法研究与应用[J]. 航空动力, 2023(3): 63-65.
LU T T, SHAO C J.Research and Application of Safety Improvement for Aero Engine Hot Section Parts[J]. Aerospace Power, 2023(3): 63-65.
[2] 宋迎东, 凌晨, 张磊成, 等. 航空发动机和燃气轮机热端部件热腐蚀-疲劳研究进展[J]. 南京航空航天大学学报, 2022, 54(5): 771-788.
SONG Y D, LING C, ZHANG L C, et al.Research Progress on Hot Corrosion-Fatigue of Aero-Engine and Gas Turbine Hot-Section Components[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2022, 54(5): 771-788.
[3] 赵高乐, 齐红宇, 李少林, 等. 热端部件低温热腐蚀疲劳损伤机理、寿命模型和抗腐蚀设计方法[J]. 力学进展, 2022, 52(4): 809-851.
ZHAO G L, QI H Y, LI S L, et al.Low-Temperature Hot Corrosion Fatigue Damage Mechanism, life Model, and Corrosion Resistance Design Method of Hot Section Components[J]. Advances in Mechanics, 2022, 52(4): 809-851.
[4] 李民, 程玉贤. 航空发动机用高温防护涂层研究进展[J]. 中国表面工程, 2012, 25(1): 16-21.
LI M, CHENG Y X.Progress in Research on High Temperature Protective Coatings for Aero-Engines[J]. China Surface Engineering, 2012, 25(1): 16-21.
[5] 张良栋, 隆小庆. 航空发动机高温氧化腐蚀与保护[J]. 全面腐蚀控制, 2002, 16(3): 3-7.
ZHANG L D, LONG X Q. high-Temperature Oxidative Corrosion and Prevention of Aeroengine[J]. Total Corrosion, 2002, 16(3): 3-7.
[6] 段绪海. W-2高温陶瓷涂层的应用研究[J]. 腐蚀科学与防护技术, 1990, 2(3): 19-22.
DUAN X H.Study on Application of W-2 High Temperature Ceramic Coating[J]. Corrosion Science and Protection Technology, 1990, 2(3): 19-22.
[7] 谭澄宇, 郑子樵, 夏长清. 新型高温陶瓷涂层的制备工艺[J]. 新技术新工艺, 2002(7): 47-48.
TAN C Y, ZHENG Z Q, XIA C Q.The Preparing Process of New Ceramic Coatings for High Temperature[J]. New Technology & New Process, 2002(7): 47-48.
[8] 刘莉. K424合金搪瓷热防护涂层制备工艺与应用研究[D]. 哈尔滨: 哈尔滨工业大学, 2015.
LIU L.Fabrication and Application of Enamel Heat Protective Coating on K424 Alloy[D]. Harbin: Harbin Institute of Technology, 2015.
[9] 刘丹丹, 樊自拴. 超高温陶瓷涂层的研究进展[J]. 材料保护, 2020, 53(5): 105-110.
LIU D D, FAN Z S.Research Progress of Ultra-High Temperature Ceramic Coating[J]. Materials Protection, 2020, 53(5): 105-110.
[10] 杨宏波, 刘朝辉, 刘娜, 等. 304不锈钢基体表面高温陶瓷涂层的制备及性能研究[J]. 热加工工艺, 2017, 46(22): 130-134.
YANG H B, LIU Z H, LIU N, et al.Research on Preparation and Properties of High Temperture Resistant Ceramic Coatings on Surface of 304 Stainless Steel Substrate[J]. Hot Working Technology, 2017, 46(22): 130-134.
[11] 蔡冬雪, 马赫, 匡波, 等. 高膨胀系数封接玻璃的研究进展[J]. 玻璃搪瓷与眼镜, 2023, 51(10): 44-53.
CAI D X, MA H, KUANG B, et al.Progress of Sealing Glass with High Expansion Coefficient[J]. Glass Enamel & Ophthalmic Optics, 2023, 51(10): 44-53.
[12] 杨志铭. 玻璃绝缘子中K2O的含量控制[J]. 玻璃搪瓷与眼镜, 2023, 51(4): 25-27.
YANG Z M.Stability Control of K2O Content in Glass Insulators[J]. Glass Enamel & Ophthalmic Optics, 2023, 51(4): 25-27.
[13] 李萌萌, 曹孙根, 陈思学, 等. 改性剂TiO2和K2O对低熔点玻璃粉结构与形貌的影响[J]. 玻璃搪瓷与眼镜, 2022, 50(12): 1-5.
LI M M, CAO S G, CHEN S X, et al.Effects of Modifiers TiO2 and K2O on the Structure and Morphology of Low Melting Point Glass Powder[J]. Glass Enamel & Ophthalmic Optics, 2022, 50(12): 1-5.
[14] 彭雨晴, 韩克清, 赵曦, 等. 新型耐高温氮化物陶瓷纤维研究进展[J]. 合成纤维工业, 2011, 34(4): 39-43.
PENG Y Q, HAN K Q, ZHAO X, et al.Research Progress in New High Temperature Resistant Nitride Ceramic Fiber[J]. China Synthetic Fiber Industry, 2011, 34(4): 39-43.
[15] 李俊生, 曾良, 刘荣军, 等. 锶钽氧氮化物功能陶瓷的高效合成、致密化及介电性能研究[J]. 无机材料学报, 2023, 38(8): 885-892.
LI J S, ZENG L, LIU R J, et al.Functional Strontium Tantalum Oxynitride Ceramics: Efficient Synthesis, Densification and Dielectric Performance[J]. Journal of Inorganic Materials, 2023, 38(8): 885-892.
[16] 胡丽玲, 张豪, 赖天, 等. 氮化物涂层的可控制备、结构特点及其性能研究进展[J]. 材料保护, 2023, 56(8): 143-156.
HU L L, ZHANG H, LAI T, et al.Research Progress on the Controllable Preparation, Structural Characteristics and Properties of Nitride Coatings[J]. Materials Protection, 2023, 56(8): 143-156.
[17] 刘倩, 刘含莲, 黄传真, 等. 高熵碳氮化物陶瓷的研究现状及应用展望[J]. 工具技术, 2023, 57(9): 16-23.
LIU Q, LIU H L, HUANG C Z, et al.Research Status and Application Prospect of High-Entropy Carbonitride Ceramics[J]. Tool Engineering, 2023, 57(9): 16-23.
[18] 许春来, 石晓斌. 飞行器热防护系统用超高温硼化物/碳化物复相陶瓷材料研究[J]. 宇航材料工艺, 2011, 41(2): 9-12.
XU C L, SHI X B.Advances on Ultra-High Temperature Composite Ceramics Used in Heat Defending Systems of Aircrafts[J]. Aerospace Materials & Technology, 2011, 41(2): 9-12.
[19] 张国军, 邹冀, 倪德伟, 等. 硼化物陶瓷: 烧结致密化、微结构调控与性能提升[J]. 无机材料学报, 2012, 27(3): 225-233.
ZHANG G J, ZOU J, NI D W, et al.Boride Ceramics: Densification, Microstructure Tailoring and Properties Improvement[J]. Journal of Inorganic Materials, 2012, 27(3): 225-233.
[20] 刘然, 薛向欣, 姜涛, 等. 硼及其硼化物的应用现状与研究进展[J]. 材料导报, 2006, 20(6): 1-4.
LIU R, XUE X X, JIANG T, et al.The Current Situation and Development of Boron and Boride[J]. Materials Review, 2006, 20(6): 1-4.
[21] 陈昌明, 张立同, 周万诚, 等. 硼化物陶瓷及其应用[J]. 兵器材料科学与工程, 1997, 20(2): 68-71.
CHEN C M, ZHANG L T, ZHOU W C, et al.Boride Ceramics and Its Application[J]. Ordnance Material Science and Engineering, 1997, 20(2): 68-71.
[22] 王永国, 李兆前, 邓建新, 等. 反应烧结法制备三元硼化物基陶瓷的研究[J]. 陶瓷学报, 2000, 21(4): 209-213.
WANG Y G, LI Z Q, DENG J X, et al.The Study of Ternary Boride Base Cermet Produced by Reaction Sintering Method[J]. Journal of Ceramics, 2000, 21(4): 209-213.
[23] 王霞, 江文. 二硅化钼材料的应用状况综述[J]. 石化技术, 2017, 24(9): 219.
WANG X, JIANG W.Review on Application of Molybdenum Disilicide Materials[J]. Petrochemical Industry Technology, 2017, 24(9): 219.
[24] 符明君, 张勇, 张耿飞, 等. 钼及钼合金改性硅化物高温抗氧化涂层研究现状[J]. 材料导报, 2023, 37(3): 177-184.
FU M J, ZHANG Y, ZHANG G F, et al.Research Progress of High Temperature Antioxidant Modified Silicide Coatings of Molybdenum and Its Alloys[J]. Materials Reports, 2023, 37(3): 177-184.
[25] 杨涛, 杜继红, 汪欣, 等. 难熔金属表面硅化物涂层的研究进展[J]. 材料保护, 2019, 52(7): 121-127.
YANG T, DU J H, WANG X, et al.Research Progress of Silicide Coatings for Refractory Metals[J]. Materials Protection, 2019, 52(7): 121-127.
[26] 马勤, 康沫狂. 高温结构硅化物研究的新进展[J]. 材料工程, 1997, 25(7): 3-6.
MA Q, KANG M K.New Advance in High-Temperature Structural Silicides Research[J]. Journal of Materials Engineering, 1997, 25(7): 3-6.
PDF(6323 KB)

Accesses

Citation

Detail

Sections
Recommended

/